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Abstract. We study many-body effects in the one-dimensional electron gas and a repulsive
delta-function interaction potential (of streng#y) using the STLS approach. The STLS
approach igieneralizedn order to treat polarization effects. We present numerical results for the
compressibility and the spin susceptibility and we compare with the quasi-exact analytical result.
The validity range of the STLS approach is characterized/pys = 72/2 with y = mVo/N,
wherem is the electron mass and the electron density.

1. Introduction

The Singwi, Tosi, Land and 8lander (STLS) approach [1] is a powerful approximating
theory for calculating the ground-state energy (GSE) and the compressibility of the
interacting electron gas. In this paper we generalize the STLS approach in order to study
polarization effects and the spin susceptibility of the one-dimensional electron gas with a
short-range interaction potential. We compare our results with quasi-exact calculations and
determine the validity range of the generalized STLS approach.

The STLS approach was originally developed for the three-dimensional electron gas
with long-range Coulomb interaction. It is well known that this approach gives quite good
results as regards the ground-state energy and the compressibility. The Lobo, Singwi and
Tosi (LST) approach [2] was developed to calculate spin-correlation effects in the interacting
electron gas. In the STLS approach and the LST approach many-body effects are described
by the local-field correction for the density-response function and the spin-response function,
respectively. However, it was found that the spin susceptibility obtained within the LST
approach is not in agreement with experiment. Nevertheless, this approach has been
applied to the two-dimensional and one-dimensional electron gas with long-range Coulomb
interaction [3]. For a review of the STLS and the LST approaches, see reference [4].

In this paper we study a one-dimensional electron gas with a short-range interaction
potential. This model was introduced previously [5] and the exact GSE was calculated as a
function of the interaction strength parameter [6]. The STLS approach was applied to this
model [6]; however, only the GSE was calculated. In a recent paper [7] we used the STLS
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approach and the LST approach, and obtained analytical results for the local-field correction
(LFC) for weak and strong coupling. In the present paper we calculate the compressibility
and the spin susceptibility by using a generalized STLS approach. The generalized STLS
approach is obtained by introducing spin-polarization effects into the STLS approach. It was
introduced recently to calculate the spin susceptibility of a quasi-one-dimensional electron
gas with long-range Coulomb interaction [8]. We compare our results with quasi-exact

results for this model obtained by means of a ladder calculation [9] and we determine the
validity range of the STLS approach. This is an important topic because the STLS approach
and the LST approach are widely used. In fact, we show that the STLS approach gives,
for the compressibility and the spin susceptibility, quite reasonable results up to a large
interaction strength parameter.

The paper is organized as follows. In section 2 we present the model and the theory.
The results for the GSE are described in section 3. The compressibility is calculated in
section 4 and the spin susceptibility is derived in section 5. A discussion of our results is
given in section 6. We give our conclusions in section 7.

2. Model and theory

The model is a one-dimensional electron gas with kinetic energy (characterized by an
effective massn and by a parabolic dispersiarg) = ¢?/2m) and an interaction energy
characterized by the potentidly. The wire axis is supposed to be in thedirection.
The interaction potential is a short-range potential of the fafm) = Voé(r) andr is
the distance between two electrons. The Fourier transform of the interaction potential is
given by V(g) = Vp. In terms of the electron density, the electron mass, and the
strength of the interaction, we define the dimensionless interaction strength paranaster
y =mVy/N. The electron density determines the Fermi wavenumperia N = 2kp /.
With vg = kr/m as the Fermi velocity, the interaction strength parameter is given by
y = nVo/2vr. Using the density of statesy = N/2¢r at the Fermi energyr, one
can write Vopr = 4y /m?. The spin-polarization parametérwith 0 < |£] < 1 is given
by § = (N — N_)/N with N = N, + N_. The electron densitie&, are expressed as
Ni = N1+ |&])/2. The Fermi wavenumbers for the polarized subsystems are written as
krr = kp(1 £ |€]) = 7 N+. The essential parameters of the theory Arend ¢ for the
electron gas angt for the interaction. We express all of the results as functiong ahd
& and we useéi/2r = 1.

For a short-range interaction potential, the LFC within the STLS approach is independent
of the wavenumber [6], and the dynamic density-response fundi@n ») is given by

Xo(q, w)
: 1)
Xo(gq, w) is the Lindhard function of the one-dimensional free-electron g&ag., &) is the

LFC for density fluctuations and'(y, & = 0) was discussed before [7]. Within the STLS
approach the LFC is given by [6]

Xo(g, w) =

1 o0
G = /O dg’ [1— (¢’ . £)]. @

S(q, v, &) is the static structure factor (SSF) and we use, following the arguments given in
[7, 8, 10], the analytical expression

1

. 3
/5@, 67 + aN%y = G, DI/ )

S(q,v,8) =
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So(g, &) is the SSF of the one-dimensional free-electron gas and is given by
So(q, &) = (1+8)So+(¢)/2+ (1 —§)So-(q)/2

with
Sox(lg| < 2krs) = |q|/2kF+ and Sox(lg| = 2kry) = 1.

The factor containing’/[1 — G (y)] represents the contribution of the collective modes to
the SSF. In the following, equation (2) and equation (3) are solved numerically.
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Figure 1. The local-field correctionG(y, &) versus the interaction strength parametefor
different values of the spin-polarization parameteralculated within the STLS approach. The
scale on the r.h.s. shows the pair distribution funcggn=0) = 1 — G(y, §).

Within the Hartree—Fock approximation (HFA), whefgy, y, &) is replaced byso(q, &),
one gets

Gura(y, &) = (L+£%)/2. (4)

This form of the LFC determines the compressibility and the spin susceptibility within the
HFA. Note thatGyra(y, & = £1) = 1. For the fully polarized electron gas one finds [11]

Gy.§=xD) =1 (5)

and the system is non-interactingt (¢, ) = Xo(g,w). This is the exact result [12].
Numerical results foiG(y, &) versusy and versus are shown in figure 1 and figure 2,
respectively. Note, thaf(y, & — 0) « £2; see figure 2. The pair-correlation functigix)
within the STLS approach is expressedgds = 0) = 1 — G(y, &) andg(z = 0) is shown
on the r.h.s. in figure 1 and in figure Zi(y, &€ = 0) was discussed in reference [7].

3. Ground-state energy

The GSEe,(y, &) per particle defines the total energy (per lendiQly, £) = Ne,(y, €). In
the following we use the notatios, (v, £) = N2eo(y, £)/2m and give explicit expressions
for eo(y, €), which is a dimensionless function ¢f andé. The LFC determines the GSE
via

2 y
oy, §) = T (1 +36) +/0 . [1— GO £)]. (©)
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Figure 2. The local-field correctiorG(y, &) versus the spin-polarization paramete(plotted
versust2) for different values of the interaction strength parametealculated within the STLS
approach. The dotted line represents the HFA. The scale on the r.h.s. shows the pair distribution
functiong(z =0) =1— G(y, &).

The ground-state energy can also be written as [13]

eo(y, &) = ekin(§) + enra(y, §) + ecor (v, §) (7)
with the kinetic (kin) energy contribution

exin(§) = 1 (1 + 367)/12 (&)
and the Hartree—Fock (HFA) energy contribution

enraly,§) =y(1-£9/2 (8b)

Note that the HFA is obtained by usir@xra(y, £) = (1 + £%)/2. The correlation (cor)
energye..-(y, £) is given by

eor (7, 8) = /O " [Grra(h8) — GOLE)]. (89
With

G E==+1)=Gura(h,E =1 =1
we get

Eeor(y, E=21)=0 and eoly, &€ = +1) = 7?%/3

which is the exact result. In fact, due to the Pauli principle, electrons with parallel spins

cannot interact via a short-range potential and the GSE of a fully polarized electron gas only
contains the kinetic energy. That is why in the one-dimensional electron gas with a short-
range interaction potential, the GSE is boundedmy12 < eo(y, £) < 72/3. In general

one findsG(1, §) > Gura(r, £)—see figure 2—and the correlation energy is negative.

In reference [9] we calculated the GSE of our model within a ladder approximation and
obtained the correct weak- and strong-coupling GSE. We found an analytical expression
for the GSE as a function of the coupling parameteand as a function of the spin-polar-
ization parametef. Correspondingly, we derived quasi-exact analytical expressions for the
compressibility and the spin susceptibility.

The GSE obtained within the STLS approach verngus shown in figure 3 for different
values of the spin polarization. Quasi-exact analytical results obtained in reference [9] are
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Figure 3. The ground-state energy per partielgy, &) versus the interaction strength parameter
y for different values of the spin-polarization parameteiThe dashed lines represent the STLS
approach and the solid lines represent quasi-exact analytical results [9].

also shown. Fogk # +1 we find that the validity range of the STLS results is small:

y < 2. Most interesting in figure 3 is the fact thaf(y, & = 0), calculated within the STLS
approach, crosses(y, £ = +1) = 72/3 at a certairy = y, = 10.2, which implies a Bloch
instability [14]: eo(y > ye, & = £1) < eo(y > v., &€ = 0). Of course, this instability is an
artifact of the STLS approach and does not occur within the exact theory. Within the HFA,
for the GSE one finds the instability at= yyrs = 72/2 = 4.935. This value oOfyy 4 is

used in the following to define the validity range of the STLS approach. For the GSE we
conclude that the validity range of the STLS approach is 2 ~ 0.4ygrs. In section 6

we discuss the artificial Bloch instability in detail.

4. Compressibility

The compressibilitye can be expressed in terms of the second derivative of the GSE via
3?E,/ON? = mvrko/2« With ko = 4m/7%N? as the compressibility of the free-electron
gas [13]. The derivative with respect 1 can be expressed as the derivative with respect
to y, and one finds

Ko 2y 12 8y decor 2)/2 3280
— =1+ —E&cor — —5 — .
K w2 T2 dy 72 9y2

= (9)
The HFA is given byko/kura = 1+ 2y /2. Within the exact theory the following limits
apply to the compressibility [9]: %k «o/x < 4.

Our numerical results obtained within the STLS approach and quasi-exact results [9]
for ko/k versusy are shown in figure 4. We conclude that the STLS approach gives a
reasonably good value for the compressibility, compared with the quasi-exact result for
y < 10 =~ 2ygra (for the difference smaller than 10% between the two values). We
mention that the validity range for the compressibility is much larger than that for the GSE.

5. Spin susceptibility

The spin susceptibility, can be expressed in terms of the second derivative of the GSE as
32E,/N?0E? = mvpko/ 2, [13]. We find

2 2
o_y W, 2,
T

= 10
o — (10)
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Figure 4. The inverse compressibility/t (in units of the inverse compressibility of the free-
electron gas Jkp) versus the interaction strength parameterThe solid line represents quasi-
exact analytical results [9]. The results obtained according to the HFA and via the STLS
approach are shown as the dotted and dashed lines, respectively.

and
o= énmo[azem(y, £)/087]

is called the spin stiffness. Within the HFA one finds tRatk,yra = 1 — 2y /72 and
ko/ksuFa = 0 for y = vy ra, which corresponds to the Bloch instability within the HFA

already found from GSE calculations.
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Figure 5. The inverse spin susceptibility/&; (in units of the inverse spin susceptibility of the
free-electron gas/ko) versusA¢ as calculated using = 2[eor (§) —£cor (0] /AE2 and AE = £
for an interaction strength parameter= 5.

We have calculated the spin stiffness fram= 2[s .. (v, &) — ecor (v, € = 0)]/AE? with
A& = £. Due to the fact thaG(y, £), and correspondingly.., (v, £), versusé? is not a
straight line—see figure 2e~depends omé. This is seen in figure 5 where the inverse
spin susceptibility versug\¢ for y = 5 is shown. Of course, only the limian& — 0
represents the true inverse spin susceptibility. In the literature we found calculations where
the stiff stiffness for an electron gas with long-range Coulomb interaction is estimated from
Ecor (¥, € = 1) — g0 (¥, &€ = 0), which corresponds taé = 1. We want to stress that this
method, applied to the present model, gives results for the spin stifinelepending on
AE.

The inverse spin susceptibility versus the interaction strength paraméseshown in
figure 6. The quasi-exact spin susceptibility is givendgyx, = 1/[1 + 2y /7] [9]: no
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Figure 6. The inverse spin susceptibility/&; (in units of the inverse spin susceptibility

of the free-electron gas/#p) versus the interaction strength parameter The solid line
represents quasi-exact analytical results [9]. The dashed, dashed-dotted and dashed—double-
dotted lines represent the STLS approach, where the spin stiffness is calculated with

2[ecor (§) — €cor(0)]/AE2 and A& = £. The HFA is shown as the dotted line. In the inset we
showy, (defined bykg/k; = 0) versusA§. The value obtained within the HF&/g pa = 4.9)

is indicated.

Bloch instability occurs. Due to the artificial Bloch instability within the STLS approach—
see figure 3—we findo/x;, = 0 at a critical parametep,. y. versusAég, used for the
calculation of«, is shown in the inset of figure 6. Strictly speaking, the spin stiffness
corresponds to the limihé — 0, and the line withA& = 0.05 in figure 6 represents the
spin susceptibility within the STLS approach. 8¢ = 0.05 one gets the Bloch instability

aty. ~ 22. By comparing the STLS result with the quasi-exact result obtained in reference
[9], we conclude that the STLS approach give reasonable results for the spin stiffness for
y < 10 =~ 2yyra. The fact that we found,. = 10.2 = y, for A§¢ = 1 can be easily
understood from figure 3, wheeg(y, & = 0) = go(y, & = 1) for y = y,.
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Figure 7. The spin stiffnes& (shown asy/y) versus the interaction strength parameteiThe
dotted line corresponds to the STLS approach derived from GSE calculationggvith 0.05.
The solid line represents quasi-exact results [9].

In order to understand better the origin of the differences between the STLS approach
and the quasi-exact result fog/«,, we have plotted in figure 7 the ratig/y versusy. We
note the small differences between the quasi-exact result (where no Bloch instability occurs)
and the STLS approach (with an artificial Bloch instabilityyat= 22). This shows that
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the spin susceptibility is, in the strong-coupling limit, very sensitive to a correct calculation
of the spin stiffness. We have plottedfy in figure 7: « is a strongly varying function

of y. In fact, a has, for largey, to compensate for the strongly negative part of the spin

susceptibility obtained within the HFA. In any approximating theory one will encounter
difficulties in attempting to represent this compensation correctly (suchcghiat > 0).

6. Discussion

The aim of the present paper was to calculate the compressibility and the spin susceptibility
from GSE calculations and to determine the validity range of the STLS approach.

From the GSE calculation within the STLS approach we conclude that the polarized
state is stabldeg(y, & = +1) < go(y, & = 0)) for y > 10.2; see figure 3. Therefore,
one could conclude that a Bloch instability occurs for= 10.2 (¢ standing for energy)
and that fory > y, our calculations do not make any sense any longer. Of course, this
instability is an artifact of the STLS approach. However, for the compressibility and the
spin susceptibility we get good agreement with quasi-exact resultg forl0—see figure
4 and figure 5—and no instability is found in the spin susceptibility for< 22. The
conclusions that we draw from these observations are the following:

(i) the STLS results for the compressibility and the spin susceptibility can be trusted for
y <10~ 2ygra = ve;

(i) the validity range of GSE calculations within the STLS approach is smaller:
y < O'4VHFA ~ OZJ/e, and

(iii) one can get artificial instabilities within the STLS approach.

The result concerning an artificial Bloch instability within the STLS approach is of
some importance: for a long-range Coulomb interaction it was claimed recently that a Bloch
instability could occur in quasi-one-dimensional systems [15]. This claim contradicts the
theorem of Lieb and Mattis [16] which indicates that a polarized one-dimensional electron
gas always has a larger GSE as an unpolarized electron gas. From the present paper we
learned that the STLS approachan lead to an artificial Bloch instability af, = 10.2
if one uses the GSE (and @t = 22 if one uses the spin susceptibility). However, for
y < 2yura ~ y. the STLS results obtained for the compressibility and the spin susceptibility
can be trusted.

In the case of a long-range Coulomb interaction potential, the instability derived from
the GSE ¢ standing for energy) occurred at> r,. ~ 1.4r,.yra ~ 1-4, depending on the
wire width [15]. r, = 1/2Na* is the Wigner—Seitz parameter wiiti as the effective Bohr
radius. The factor 1.4 indicates that correlation effects are not yet very important and that the
instability is dominated by exchange effects. Therefore, we believe that the instability for
the long-range Coulomb interaction [8, 1&ifight be a real effect. Experimental evidence
for this instability was cited in reference [8]. But we admit that more experiments are
needed. However, independently of the existence (or non-existence) of this instability, we
conclude from the results obtained in the present paper that the numerical values for the
spin susceptibility obtained in reference [8] are expected to be correet for,.

Using a ladder approach it was argued that a Bloch instability occurg,fes 23.6
[17]. This artificial instability again has its origin in the wrong strong-coupling limit of the
ground-state energy found in reference [18)(y — oo, & = 0) = 1.2172/3 instead of
the exact resulto(y — o0, £ = 0) = 72/3. This shows that the prediction of a Bloch
instability is a non-trivial problem if exact results for the GSE are not available. In our
analytical approach within a simplified ladder theory, we obtam&l2 < eo(y, £) < 72/3
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and no Bloch instability was found [9].

We believe that a short-range interaction potential is the most unfavourable potential
for the application of the STLS approach: the GSE within the STLS approach becomes
completely wrong for large couplingso(y — 00, & = 0) o« In(y) [6, 7] while the exact
result iseg(y — o0,£) = n?/3 = 3.29. This is not the case if the STLS approach is
used for systems with a long-range interaction potential [11, 18]. Therefore, we believe
that the STLS results for the compressibility [18] and the spin susceptibility [8] of quasi-
one-dimensional systems with a long-range interaction potential can be trusted at least up
tor, < ry.. A more conservative estimate would he< r.yra-

7. Conclusion

We have presented results for the ground-state energy, the compressibility and the spin
susceptibility of a one-dimensional electron gas with a short-range interaction potential
obtained by using ageneralized STLS approach. From comparing with quasi-exact
results we conclude that the STLS approach gives quantitatively correct results for the
compressibility and the spin susceptibility f < 10 ~ 2ygrs. The results obtained for

the ground-state energy are found to be less correct and the validity range is estimated as
y < 2~ O-4VHFA-
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